翻訳と辞書
Words near each other
・ Kripal Singh Shekhawat
・ Kripalu Center
・ Kripalu Maharaj
・ Kripalvananda
・ Kripamayee Kali Temple
・ Kripan
・ Kripapureeswarar Temple
・ Kripashankar Singh
・ Kripasur Sherpa
・ Kripekapura
・ Kripik
・ Kripke
・ Kripke semantics
・ Kripke structure (model checking)
・ Kripke–Platek set theory
Kripke–Platek set theory with urelements
・ Kripo live
・ Kripp Johnson
・ Kripparrian
・ Krippen station
・ Krippenbach
・ Krippendorf's Tribe
・ Krippendorf-Dittman Company
・ Krippendorff's alpha
・ Kripplebush Historic District
・ Krippner
・ Krips
・ Krirk University
・ Kris
・ Kris (disambiguation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kripke–Platek set theory with urelements : ウィキペディア英語版
Kripke–Platek set theory with urelements

The Kripke–Platek set theory with urelements (KPU) is an axiom system for set theory with urelements, based on the traditional (urelement-free) Kripke-Platek set theory. It is considerably weaker than the (relatively) familiar system ZFU. The purpose of allowing urelements is to allow large or high-complexity objects (such as the set of all reals) to be included in the theory's transitive models without disrupting the usual well-ordering and recursion-theoretic properties of the constructible universe; KP is so weak that this is hard to do by traditional means.
==Preliminaries==

The usual way of stating the axioms presumes a two sorted first order language L^
* with a single binary relation symbol \in.
Letters of the sort p,q,r,... designate urelements, of which there may be none, whereas letters of the sort a,b,c,... designate sets. The letters x,y,z,... may denote both sets and urelements.
The letters for sets may appear on both sides of \in, while those for urelements may only appear on the left, i.e. the following are examples of valid expressions: p\in a, b\in a.
The statement of the axioms also requires reference to a certain collection of formulae called \Delta_0-formulae. The collection \Delta_0 consists of those formulae that can be built using the constants, \in, \neg, \wedge, \vee, and bounded quantification. That is quantification of the form \forall x \in a or \exists x \in a where a is given set.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kripke–Platek set theory with urelements」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.